JUNE 01-04, 2020

SYSTEMS AND MODELING FOR ACCELERATED RESEARCH IN TRANSPORTATION (SMART) MOBILITY CONSORTIUM TOOLS AND PROCESS DEVELOPMENT

AYMERIC ROUSSEAU

Manager Vehicle and Mobility Systems Group Argonne National Laboratory Project ID# EEMS0058

This presentation does not contain any proprietary, confidential, or otherwise restricted information

PROJECT OVERVIEW

Timeline	Barriers	
 Project start date: Oct. 2018 Project end date: Sep. 2019 Percent complete: 100% 	 High uncertainty in technology deployment, functionality, usage, impact at system level Computational models, design and simulation methodologies Integration of many model frameworks: land use, demand, flow, vehicles, grid, economy 	
Budget	Partners	
FY19 Funding Received : \$1,000,000	 Argonne (Lead) LBNL, NREL, ORNL, INL, LLNL Universities (UCI, GMU, UIC, Texas A&M, Texas At Austin, UNSW, Washington) 	

Relevance: Transportation System is Being Disrupted Traveler Behavior Vehicle Electrification Connectivity

APPROACH

Answer Complex Questions through High Fidelity System Simulation

MILESTONES

TECHNICAL ACCOMPLISHMENTS

- Enhanced model fidelity
- Connected models
- Migrated workflow to HPC
- Validated POLARIS (current & past)
- Defined future scenarios
- Exercised the workflow

LEARNING FROM DETAILED MODELS TO SCALE TO LARGER ONES

Note: Any proposed future work is subject to change based on funding levels.

PEV CHARGING LOCATION AND BEHAVIOR

HPC ENABLES OPTIMIZATION & CONTROL

Implemented processes to efficiently link to external optimization tools

Example: Personally Owned AVs

Example: Platoon Formation Decision

WORKFLOW IMPLEMENTATION USING POLARIS IS UNIQUE

Key modeling features:

- Full-featured activity-based model
- Integrated demand, network assignment and traffic flow
- Includes freight shipments and local deliveries
- Traveler behavior impacts of **VOTT** across many choices
- High-fidelity vehicle energy consumption
- EV charging and grid integration
- Connection to UrbanSIM land use

Computational performance:

- Fully agent-based
- Large-scale models with 100% of agents
- High-performance C++ codebase
- 4-6 hr runtime for up to 10 million agents
- Cross-platform implementation can run on Linux HPC clusters
- Integration with external optimization solvers (CPLEX, Gurobi, GLPK)

VALIDATION

U.S. DEPARTMENT OF ENERGY SMARTMOBILITY Systems and Modeling for Accelerated Research in Transportation

Individual Mode Choices against CMAP⁽¹⁾ Survey

VALIDATION

Total Vehicle Load on the System Matches CMAP Survey Data

BACK CASTING VALIDATION

Scenarios Differ only in TNC/Taxi Characteristics

Scenario Parameters	2010	2014	2018
Fleet size	3,000	10,000	48,000
Service area	Chicago & inner suburbs	Whole metro area	Whole metro area
Avg. wait time	12 minutes	12 minutes	6 minutes
Per mile cost	\$1.80	\$1.50	\$1.25

Sources: data.cityofchicago.org/browse?category=Transportation;

BACK CASTING VALIDATION

Transit (Bus + Train) declines slightly as TNC grows substantially

FORECASTING SCENARIOS CONSIDERED

A world of

HIGH SHARING, PARTIAL AUTOMATION (Sharing)

New technology enables people to significantly increase the use of **transit**, **ride-hailing** and **multi-modal travel**. **Partial automation** is introduced and is primarily used on the highway.

HIGH SHARING, HIGH AUTOMATION (SAV)

Technology has taken over our lives, enabling high usage of fully automated driverless vehicles, ride-hailing and multi-modal trips, which are convenient and inexpensive. As a result, private ownership has decreased and e-commerce has increased.

LOW SHARING, HIGH AUTOMATION (Private-AV)

Fully automated privately owned driverless vehicles dominate the market. The ability to own AVs leads to low ride-sharing and an expansion of urban/sub-urban boundaries, while e-commerce has increased.

SHARED FLEET CAVS ENABLE HIGH SYSTEM EFFICIENCY

Compared to personally owned CAVs

INCREASE IN E-COMMERCE LOWERS OVERALL SYSTEM VMT AND ENERGY

Fewer shopping trips, more deliveries make the difference

RESPONSE TO PREVIOUS YEAR REVIEWERS' COMMENTS

Reviewer Comment	Answer
Specific details of each product covered by the project should be explained. In addition, the reasons why these products are chosen for development should be explained	Detailed description of the tools and the workflow is available in the SMART Mobility Workflow Capstone report
The reviewer also strongly endorsed the suggestion to model the same city with both POLARIS and BEAM to compare results with the primary goal of comparing and improving each model	The models for two metropolitan areas (Detroit and Austin) are currently being developed with both tools
The reviewer suggested considering validation of simulation model in the different environments	Additional validation and back casting was performed with POLARIS

PARTNERSHIPS AND COLLABORATIONS

EEMS013, EEMS016, EEMS017, EEMS020, EEMS023, EEMS031, EEMS034, EEMS035, EEMS057, EEMS060, EEMS068, EEMS075, EEMS076, EEMS077, EEMS078, EEMS079

Improvement of CAV traffic flow model using CAV-specific fundamental diagrams

Shared Automated Vehicle (SAV) fleet modeling

Traveler behavior – Value of Travel Time

Activity scheduling and resource allocation

TNC modeling

Real-world vehicle energy use used to develop the Machine Learning Model

REMAINING CHALLENGES AND BARRIERS

- Numerous manual steps, which required coordination amongst staff from multiple National Laboratories to manually launch their processes and transfer data back and forth
- Lack of robust user interfaces for efficient simulation setup and analysis
- Ad-hoc, file-based connections between many tools
- Computational barriers and inefficiencies in many tools
- Lack of common post-processing tools to quickly and consistently analyze results and perform quality check
- Limited validation, calibration of stand-alone tools and no calibration for joint process

PROPOSED FUTURE RESEARCH

Note: Any proposed future work is subject to change based on funding levels.

SUMMARY – UNIQUE CAPABILITIES

 Developed a unique workflow to estimate the impact of new technologies on mobility, energy, cost, GHG...

Integrated

- >10 partners
- > 12 tools
- VTO Benefit/Targets
 Includes economic impact
- Linkage with Life Cycle Analysis tools (GREET)

High Fidelity

- 100% agents simulated
- Passenger and freight movement
- Travel behavior
- Includes stop signs & traffic lights
- Enables vehicle speed dynamic
- Accurate energy consumption
- Component operating conditions

Computationally Efficient

- ~4h for 10M agents
- Entire process deployed with HPC

- Validated POLARIS for current and previous scenarios to increase forecasting confidence
- Exercised workflow on multiple future scenarios

For any questions, please contact: Aymeric Rousseau (arousseau@anl.gov)

U.S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

